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Complete asymptotic forms of the poles of Green’s functions of a Helmholtz resonator are constructed 

with respect to a small parameter (the linear dimensions of the aperture), which converge to the zeroth 

eigenvalue of the “closed” resonator. The principal terms of the asymptotic forms of the solutions of 

the corresponding scattering and radiation problems are obtained. 

THE ACOUSTIC Hehnholtz resonator is a surface obtained from the boundary of a finite volume with a small 
opening cut in it [l-3]. It has been shown [4, 51 that if ki $0 is the eigenvalue of the unperturbed 
problem, then for certain frequencies k close to k, when a plane wave is incident the field reflected from 

the Hehnholtz resonator is different from the field scattered by the “closed” resonator by a quantity of the 

order of unity when E -+ 0 (0 c ~~<lis the linear dimension of the aperture). In the quasi-stationary case 

(k, =0) the situation is quite different: the field reflected from the Hehnholtz resonator differs, under 
peak conditions, from the field scattered by the “closed” resonator by a quantity 0(&-l). 

This difference is explained as follows. If k,’ is the simple eigenvalue of the “closed” resonator (and the 
minimum eigenvalue k,’ =0 is in fact this), Green’s function of the unperturbed internal problem for k 

close to k. can be represented in the form 

G'"(X,y,k)=(k; -k2)-'W(x)W(Y)+~(x.Y.k) (0.1) 

where &((x, y, k) is a function that is regular in a certain neighbourhood of k,, ye is the corresponding 

eigenfunction, orthonormalized in b(Q), and R is the interior of the resonator. If k,, ~0, then, as can be 

seen from (O.l), this value is a first-order pole of the function G”(x, y, k). In this case, Green’s function 

G,(x, y, k) of the Hehnholtz resonator has a unique first-order pole TV, which approaches k, as E + 0, 

and for k close to k,, the following representation holds [6] 

G,(x,y,k)=(~; -k2)-‘Ys(x)\Y,(y)+~;,(x,Y.k) (0.2) 

where, as E +O, the quasi-eigenfunction Y, +w in We, Ye +O in Wi(K\fi), and K is any 
compactum in R3. Everywhere henceforth the convergence of the functions is understood to be in these 

norms. 
The value of k, = 0 is a second-order pole with respect to the k functions G”(n, y, k). A consequence 

of this is the existence in Green’s function of the Helmholtz resonator of two first-order poles z!‘) + 0 

connected by the relation ‘T, = $’ = -q’ 

G,(x.y.k)=(2Re~,)-‘((~, -k)-'Ye(x)Y,(y)+(?,+k)-'~~(~)~e(y))+~e(x,y,k) (0.3) 
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where Ye + w = me@ 0 inside R and Ye -+ 0 outside C? [6,7]. 

The first term on the right-hand side of (0.2), like the first two terms on the right-hand of (0.3), are the 
terms that give rise to resonance phenomena. The presence in (0.3), are the terms that give rise to 
resonance phenomena. The presence in (0.3) of the factor (2Rer,)“ implies that the quasi-stationary 
mode differs from those in the case when k, r 0. Since Z, + 0, Imr, -+ 0, YC + 0, outside the resonator 

as E + 0, to obtain the principal terms of the asymptotic forms of the corresponding bounda~-vaiue 
problems it is necessary to know the asymptotic forms of 2, and Y,. We will construct these expansions 

below. 

1. FORMULATION OF THE PROBLEM AND FUNDAMENTAL PROPOSITIONS 

Suppose a limited region Q c R3 has a fairly smooth boundary I’,, and I”, is obtained from 
I’, by cutting out an aperture w, with linear dimensions O(E~) (an acoustic Helmholtz reson- 
ator), If the space is filled with a homogeneous and isotropic liquid or gaseous medium, the 
potential U, of its velocity v, = gradu, is a solution of the following boundary-value problem 

which satisfy the Meixner condition on the edge of the surface I,. Here and everywhere 
henceforth n is the outward normal to B and x=(x,, x2, x,), r=lx I. The function f is 
arbitrary, the surface I, can be regarded as a radiating surface. The problem of finding the 
scattered field U, which occurs when an external field u”“~ is reflected from an ideal rigid 
surface r, reduces to the solution of the boundary-value problem (1.1) and (1.2). In this case, 
we must put f = -&P /iha in (1.1). 

Suppose Q,(x, k) = vC.(n, k) is the solution of the Neumann problem for the Helmholtz 
operator outside Q, and U’“(x, k) is the regular part of the solution of the Neumann problem 
in 511. The expression for the solution of boundary-value problem (l.l), (1.2) in terms of 
Green’s function (0.3) gives the following representation for it [6, 71 

u,(d) +U,(x,k) (1.3) 

where U, + Pie as E + 0 uniformly with respect to k, and the quasi-eigenfunction W,(X) is 
the solution of bo~da~-value problem (1.1) when k = 2,. 

Assuming that Q in the neighbourh~d of the origin of coordinates coincides with the half- 
space X, > 0, o is a two-dimensional region with a smooth boundary in the X~ = 0 plane, and 
0, = {x : _xE-~ E o}, in the following section we will show that 

where c, is the capacity of the “plate” w [S, 93, is the transverse cross-section [2, lo] of Green’s 
function G” (x, y, 0) of the Neumann problem for the Laplace operator outside R when y = 0, 
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and gz’“(x, k) are the regular parts of the functions G’“(x, 0, k). Since, in addition to the pole 
zf’ = z, there is also the pole zr*) = -- z,, the sign of ReT, > 0 is chosen in order to be more 
specific. 

The following expansion holds for the quasi-eigenfunction v,(x) 

v,(x) = -t2jz0 ej~~~~l(o,)G’“(x,O,~), x o n\.!J(e), 4’) = w-l 

v,(x) = 2 ej,. ’ 
j=O 

, ,2 T 
(1 

=W2e). ~o(5)=~Y(5h q(t)=0 

v,(x) = k* jf,o ei~~ii:ll(Dy)GCX(X.O,R), x tz C2u S(e) 

(l-6) 

Y(S) = 

I 

l-;m. 53 >o 

$0, 53 < 0 

where k = T,, s(t) is a sphere of radius t with centre at the origin of coordinates, Rp)(D,,) are 
differential polynomials of the jth order with respect to the variable y with constant 
coefficients, and Y(e) E W&JR3) is a function that is harmonic outside 55 and which falls off at 
infinity and is equal to unity on o. Note that the quasi-eigenfunctions v,(x) and ‘y,(x) which 
occur in (1.6) and in (0.3) and (1.3) are equal, apart from the scalar factor 1+0(l). 

It can be seen from (1.3) that resonance phenomena will be observed to the greatest extent 
for real values of k = k(e) in the peak modes k = T, +O(Imz,), k = -TG + O(Imz,). Without loss 
of generality we will henceforth only consider the first of these, i.e. we will assume that the real 
k = k(e) has the form 

k = ez, + ~~0~ + e4(k4 + o(1)) (1.7) 

For a radiating surface r,, in the case of the general state, a, # 0. Substituting the asymptotic 
expansions (1.5) and (1.6) into (1.3) and taking (1.4) into account we obtain the following 
representation for the solution of boundary-value problem (O.l), (0.2) 

u,(x;R)-E”Af, XER\S(E); u,(x;k)-e-‘A,Y(Q, XES(~E) 

u,(x;k) - A,E-~Iw,G~~(x,O,~), x ct CluS(e) (1.8) 

Af = M a,v(s, - Rq)-‘(~c~)-~, 5=x/e* 

When finding the scattered field u, that occurs when uouf is diffracted by an ideally rigid 
surface I-,, the situation is somewhat different since in this case u/ =O. Suppose 4(x; k) is the 
scattered field which occurs outside n when the external field u““‘(x; k) is reflected from r, 
(the solution of the Neumann problem outside n when f=-&P/&I), and u=u, +rP in 
R3 \a It can be shown [5,6], that in the peak mode (1.7) 

aUoUt(X;k) 
I lv,(x)~ an ds - -e2+t~)u(0,0) 
r0 

Substituting (1.5), (1.6) and (1.9) into (1.3) we obtain the principal terms 
forms for the scattered field 

u,(x;k) - ~~~6, x E L2 \S(E); u,(x:k) - e-36Y(EJ, x E S(2e) 

(1.9) 

of the asymptotic 
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(1.10) 

2. CONSTRUCTION OF THE ASYMPTOTIC FORMS OF THE POLES AND 
QUASI-EIGENFUNCTIONS 

We will show that relations (1.5) and (1.6) hold. The series (1.6) are constructed by the 
method of matched asymptotic expansions. The boundary-value problems for the second- 
order coefficients of (1.6) are obtained as follows [5, 111. We substitute this series and also 
series (1.5) into (1.1) with f = 0, change to the variable E, = x%2 in the equation and boundary 
conditions, write the equation separately for the same powers of E, and pass to the formal limit 
as E + 0. We obtain 

j-4 

(2.1) 

where R* is the & = 0 plane and hi are the coefficients of the series 2:. 
When t 2 1, the differential polynomials will be sought in the form 

Rj’)(D,)= i f$“(D,), @‘)(Dy)= i a;’ ai 
i=l q=o aqy,ai-qy2 

where a!:’ are certain constants. We will denote the first and third series of (1.6) by wr(x, k) 
and wp(x, k), respectively, where the quantity k is not replaced by 7,. Then, the asymptotic 
forms of the corresponding quasi-eigenfunctions v,(x) have the form w~=(x, 7,). By 
definition, the coefficients of the series wy(x, k) are analytic in a certain neighbourhood of 
zero, satisfy the Neumann zeroth boundary condition on r, \O, are the solutions of the 
Hehnholtz equation inside R and outside Q respectively, and for real k the coefficients of the 
series wp(x, k) also satisfy the radiation condition (1.2). As r -+ 0, k + 0 for Green’s functions 
we have for the limiting problems and their derivatives 

<‘i)(D,)G’“*eX (x,0,&) = (-1);(211)-‘~(j)(D,)(r-’ coskr)+ g;8ex(X,k), j 3 1. 

G”‘(X,0,k)=(2x)-‘r-‘c0skr+g~~(X,k) (2.2) 

G”(x,O,k)=(2&-‘coskr-k-Z-y2+g~(x,k) 

hG’“(x,O,k)=O, kER, ImG”“(O,O,k)-Reka, k+O (2.3) 

where the functions g:“(x, k) are infinitely differentiable with respect to the variable x and are 
analytic with respect to the variable k. It is shown in [5] that the last equation holds. 

In sums U(x, E) of the form ~y(x, 2,) we will define the operator K, as follows [6, 111. We 
will expand the coefficients of the series U(x, E) in series as r + 0 and change to the variable 
t= xe-*. In the double series obtained we take the sum of terms of the form &j$(@ with i<q, 
which we will also represent by K,(U(x, E)). 

We will call the two asymptotic power series V+*-(5) conjugate if their sum is a polynomial. 
Suppose the functions z, and the series wy(x, k) have asymptotic forms defined by (1.5) and 
the first and third formulae of (1.6), while the coefficients z,, @) and the differential 
polynomials qO)(DY) are arbitrary, but 2, f 0, z, = $2j+1)(DY) = O.Then, it follows from the 
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representations (2.2) that for any integer N 3 0 

KN(ly~'ex(x.ze))= k &iy.h~en(~) 
i=O 

the series viDcx(Q are conjugate, and are formal asymptotic solutions of boundary-value 
problems (2.1) as p =I 5 I+ OQ, where the functions u,(c) are replaced by vk”“(&, and for these 
the following representations hold 

V;(k) = Rr’y~* - (2.~)-‘&R33-’ + Co) 
(2.4) 

lc”(Q = (2n)-‘+r;(Rr)p-’ +Z,) 

v,‘” (5) = VT (EJ = 0 
(2.5) 

vjF(&= ~~~‘“(~)+2’r;‘~j+,(v~‘e~(~)-~~~eX)T(2X)--17:~j, i> 2, 

(2.6) 

where i B 2, @’ = e)w’, @ = 0, while the series v(S) are independent of T~+~, @2i’q)(Dr) 
when q 2 j. If, moreover, Imz, = Im@ = 0, then 

by virtue of (2.2) and (2.3). 
Hence, the problem of matching the series (1.6) has been reduced to finding solutions 

~~(4) E W~,JR’ \ 9 of boundary-value problems (2.1) which have asymptotic forms as p + = 
which are identical with the series l$tiSeX(& when e,z 0. This agreement will be achieved by 
choosing the constants T~+~ and the polynomials ?(‘+j)(D,). 

Since -k2R,$‘)Gin(x, 0, k) + Rr$*, k*Z?r)G’“(x, 0, k) + 0 as k + 0, by virtue of (2.2), while 
the function Y, + w inside 0, and Ye + 0 outside R as E +O, then, by choosing @) in 
accordance with the first expression in (1.6), we obtain 

Boundary-value problem (2.1) for u&) has the form 

Atuo=O, %Ey, ~o/%,=O. kY (2.8) 

By definition, the function Y(E,), harmonic outside 5, has the following symptotic forms as 

P-+” 
53 3 0 

5sSO’ 
X(C) = +p-1 + : zj(s)p-1-2i 

i-1 

and its derivative with respect to 5, is zero on y; Z,(c) are uniform harmonic polynomials of 
degree i. We put u,(e) = @‘)w*Y(Q. The function U, E W:,JR’ \ 7) is a solution of boundary- 
value problem (2.8), and by virtue of (2.4) the following equations hold as p + 00 

V. (5) - vd”*‘” (4) = ~‘((2*)-‘7: -HW*c,)P-’ + ~ ((2~)-‘7~(~l)i~‘2i’(~~)~-L -Zi(5)p-‘-*‘), S,hO 
is1 

Equating the coefficient of p” on the right-hand side of the last equation to zero, we obtain 
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the value of (1.5) for 7,. Equating the coefficients of the remaining powers of p to zero we 
obtain I@“‘. Note that by determining p,“)(D,) we finally find R,‘z)(D,). Hence, we have 
carried out the “zeroth” matching step. 

The further proof is carried out by induction. At the jth step, by equating the asymptotic 
forms at infinity of the solution ~~(4) of problem (2.1) to the series (2.6), we determine the 
coefficients rj+l and the polynomials p)(D,), and consequently the polynomials R~~~~+,(D,,) 
also. The equations 

and (1.5) for 2, follow from (2.5)-(2.7). 
Equation (1.5) also holds for Ims,. 

In fact, by taking the imaginary part of (2.1) we: obtain the boundary-value problem 

In view of (2.6) and (2.7) as P + - 

hnu&)=o(p-1). 5330, ImuJ(s)=r:~~o)o+~(P-lx 5340 (2.10) 

The function Imu, = z~R~‘oY(&, &, -5,) is obviously a solution of boundary-value problem (2.9) 

and as p + - has the asymptotic forms (2.10). Equating the coefficients of p-’ in the series ImVF(c) and 
in the asymptotic form of the function Imu&) when e3 > 0, we can determine Im?,. 

As a result of this procedure for any integer N > 0 as p --+ m we have 

KN (Wf”“(X,~,)) = i EiUi(i$)p 63s 09 
uj(4> = o(P1i’21) (2.11) 

isO 

We extend the partial sums 

$;(x,k) = Tk2 $ &i~~~21(D,)G"'e'(x,0,k) 
j=O 

to zero outside E and inside a, respectively, and we denote by u,,(t) the partial sum of the 
second series of (1.6) and by x(t) the infinitely differentiable cutoff function, which is identi- 
cally equal to zero when t c 1 and unity when t > 2. By definition, the function 

belongs to W&JR3 \?;,), is analytic with respect to k in a certain neighbourhood of zero, and is 
a solution of the boundary-value problem 

where the function fe&, k) is analytic with respect to k, and suppf,,Jx, k)cS(2&). The 
function W&X, k) satisfies the radiation condition (1.2) for real k. In view of (2.1) and (2.11) 
the norm of &(x, r:,) in LJR3) is of the order of ?I, where N, increases without limit as 
N + 00 (see, for example, [16]). The asymptotic expansions of r,, v,(x) are constructed. The 
justification for this follows from [6,7]. 

The flattening of the resonator in the neighbourhood of the aperture has no effect on the 
values of r,, Imr22,4, fl) and on representation (1.8) and (l.lO), which is connected with 
the asymptotic forms Ginsex(x, 0, k) [12, 131. When n is a sphere, and the projection of the 
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aperture CO, on to the tangential plane is a circle, the value of z, is identical with the value of 
this quantity obtained by non-rigorous Rayleigh methods. 
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